Tx = Ax para todo x ϵ Rn.
Este hecho es de gran utilidad. Si Tx = Ax. Entonces un T = NA e Im T = RA. más aun, v(T) = dim un T = v(A) y p(T) = dim Im T = p(A). Así se puede determinar el núcleo, la imagen, la nulidad y el rango de una transformación lineal de Rn-Rm determinando el espacio nulo y la imagen de la matriz correspondiente. Adicionalmente, una vez que se sabe que Tx = Ax. Se puede evaluar Tx para cualquier x en Rn mediante una simple multiplicación de matrices.
Pero esto no es todo. Como se verá, cualquier transformación lineal entre espacios vectoriales de dimensión finita se puede representar mediante una matriz.
Teorema 1
Sea T:Rn -Rm una transformación lineal. Existe entonces una matriz única de m*n, AT tal que
Demostración
Sea w1 = Te1,w2 = Te2,….,wn = Ten. Sea AT la matriz cuyas columnas son w1, w2,…., wn y hagamos que AT denote también ala transformación de Rn-Rm, que multiplica un vector en Rn por AT. si
Entonces


Ahora se puede demostrar que AT es única. Suponga que Tx = ATx y que Tx = BTx para todo x ϵ Rn. Entonces ATx = BTx, o estableciendo CT= AT – BT, se tiene que CTx = 0 para todo x ϵ Rn. En particular, CTei es la columna i de CT. Así, cada una de las n columnas de CT es el m-vector cero, la matriz cero de m*n. Esto muestra que AT = BT y el teorema queda demostrado.
No hay comentarios:
Publicar un comentario